3,947 research outputs found

    Effect of the Coulomb interaction on the electron relaxation of weakly-confined quantum dot systems

    Get PDF
    We study acoustic-phonon-induced relaxation of charge excitations in single and tunnel-coupled quantum dots containing few confined interacting electrons. The Full Configuration Interaction approach is used to account for the electron-electron repulsion. Electron-phonon interaction is accounted for through both deformation potential and piezoelectric field mechanisms. We show that electronic correlations generally reduce intradot and interdot transition rates with respect to corresponding single-electron transitions, but this effect is lessened by external magnetic fields. On the other hand, piezoelectric field scattering is found to become the dominant relaxation mechanism as the number of confined electrons increases. Previous proposals to strongly suppress electron-phonon coupling in properly designed single-electron quantum dots are shown to hold also in multi-electron devices. Our results indicate that few-electron orbital degrees of freedom are more stable than single-electron ones.Comment: 20 pages (preprint format), 7 figures, submitted to Phys. Rev.

    Phonon-induced electron relaxation in weakly-confined single and coupled quantum dots

    Get PDF
    We investigate charge relaxation rates due to acoustic phonons in weakly-confined quantum dot systems, including both deformation potential and piezoelectric field interactions. Single-electron excited states lifetimes are calculated for single and coupled quantum dot structures, both in homonuclear and heteronuclear devices. Piezoelectric field scattering is shown to be the dominant relaxation mechanism in many experimentally relevant situations. On the other hand, we show that appropriate structure design allows to minimize separately deformation potential and piezolectric field interactions, and may bring electron lifetimes in the range of microseconds.Comment: 20 pages (preprint format), 7 figures, submitted to Physical Review

    A laser diode based system for calibration of fast time-of-flight detectors

    Full text link
    A system based on commercially available items, such as a laser diode, emitting in the visible range 400\sim 400 nm,and multimode fiber patches, fused fiber splitters and optical switches may be assembled,for time calibration of multi-channels time-of-flight (TOF) detectors with photomultipliers' (PMTs') readout. As available laser diode sources have unfortunately limited peak power, the main experimental problem is the tight light power budget of such a system. In addition, while the technology for fused fiber splitters is common in the Telecom wavelength range (λ850,13001500\lambda \sim 850, 1300-1500 nm), it is not easily available in the visible one. Therefore, extensive laboratory tests had to be done on purpose, to qualify the used optical components, and a full scale timing calibration prototype was built. Obtained results show that with such a system, a calibration resolution (σ\sigma) in the range 20-30 ps may be within reach. Therefore, fast multi-channels TOF detectors, with timing resolutions in the range 50-100 ps, may be easily calibrated in time. Results on tested optical components may be of interest also for time calibration of different light detection systems based on PMTs, as the ones used for detection of the vacuum ultraviolet scintillation light emitted by ionizing particles in large LAr TPCs.Comment: submitted to JINS

    Carrier-carrier entanglement and transport resonances in semiconductor quantum dots

    Get PDF
    We study theoretically the entanglement created in a scattering between an electron, incoming from a source lead, and another electron bound in the ground state of a quantum dot, connected to two leads. We analyze the role played by the different kinds of resonances in the transmission spectra and by the number of scattering channels, into the amount of quantum correlations between the two identical carriers. It is shown that the entanglement between their energy states is not sensitive to the presence of Breit-Wigner resonances, while it presents a peculiar behavior in correspondence of Fano peaks: two close maxima separated by a minimum, for a two-channel scattering, a single maximum for a multi-channel scattering. Such a behavior is ascribed to the different mechanisms characterizing the two types of resonances. Our results suggest that the production and detection of entanglement in quantum dot structures may be controlled by the manipulation of Fano resonances through external fields.Comment: 8 pages, 6 figures, RevTex4 two-column format, submitte

    Behaviour in Magnetic Fields of Fast Conventional and Fine-Mesh Photomultipliers

    Full text link
    The performance of both conventional and fine-mesh Hamamatsu photomultipliers has been measured inside moderate magnetic fields. This has allowed the test of effective shielding solutions for photomultipliers, to be used in time-of-flight detectors based on scintillation counters. Both signal amplitude reduction or deterioration of the timing properties inside magnetic fields have been investigated

    Topological invariants in interacting Quantum Spin Hall: a Cluster Perturbation Theory approach

    Get PDF
    Using Cluster Perturbation Theory we calculate Green's functions, quasi-particle energies and topological invariants for interacting electrons on a 2-D honeycomb lattice, with intrinsic spin-orbit coupling and on-site e-e interaction. This allows to define the parameter range (Hubbard U vs spin-orbit coupling) where the 2D system behaves as a trivial insulator or Quantum Spin Hall insulator. This behavior is confirmed by the existence of gapless quasi-particle states in honeycomb ribbons. We have discussed the importance of the cluster symmetry and the effects of the lack of full translation symmetry typical of CPT and of most Quantum Cluster approaches. Comments on the limits of applicability of the method are also provided.Comment: 7 pages, 7 figures: discussion improved, one figure added, references updated. Matches version published in New J. Phy

    Linear entropy as an entanglement measure in two-fermion systems

    Full text link
    We describe an efficient theoretical criterion, suitable for indistinguishable particles to quantify the quantum correlations of any pure two-fermion state, based on the Slater rank concept. It represents the natural generalization of the linear entropy used to treat quantum entanglement in systems of non-identical particles. Such a criterion is here applied to an electron-electron scattering in a two-dimensional system in order to perform a quantitative evaluation of the entanglement dynamics for various spin configurations and to compare the linear entropy with alternative approaches. Our numerical results show the dependence of the entanglement evolution upon the initial state of the system and its spin components. The differences with previous analyses accomplished by using the von Neumann entropy are discussed. The evaluation of the entanglement dynamics in terms of the linear entropy results to be much less demanding from the computational point of view, not requiring the diagonalization of the density matrix.Comment: 16 pages. Added references in section 1 Corrected typo

    Entanglement dynamics of electron-electron scattering in low-dimensional semiconductor systems

    Full text link
    We perform the quantitative evaluation of the entanglement dynamics in scattering events between two insistinguishable electrons interacting via Coulomb potential in 1D and 2D semiconductor nanostructures. We apply a criterion based on the von Neumann entropy and the Schmidt decomposition of the global state vector suitable for systems of identical particles. From the timedependent numerical solution of the two-particle wavefunction of the scattering carriers we compute their entanglement evolution for different spin configurations: two electrons with the same spin, with different spin, singlet, and triplet spin state. The procedure allows to evaluate the mechanisms that govern entanglement creation and their connection with the characteristic physical parameters and initial conditions of the system. The cases in which the evolution of entanglement is similar to the one obtained for distinguishable particles are discussed.Comment: 22 pages, 7 figures, submitted to Physical Review

    The Impossible Quest – Problems with Diligent Search for Orphan Works

    Get PDF
    Digital technologies allow unprecedented preservation and sharing of world-wide cultural heritage. Public and private players are increasingly entering the scene with mass digitisation projects that will make this possible. In Europe, legislative action has been taken to allow cultural institutions to include in their online collections copyright works whose owners are either unknown or non-locatable (“orphan works”). However, according to the Orphan Works Directive, cultural institutions must attempt to locate the owner of a work before using it. This is the so-called “diligent search” requirement. This paper provides an empirical analysis of the conditions under which a diligent search can feasibly be carried out. The United Kingdom, the Netherlands, and Italy, all of which have implemented the Orphan Works Directive, have been selected as case studies. For each jurisdiction, this analysis determines what the requirements for a diligent search to locate copyright holders are, what the authoritative sources and databases to be consulted are in practice and, most importantly, to what extent these are freely accessible online. In doing so, our analysis provides insights into the two main issues affecting cultural heritage institutions: (1) how much legal certainty does the implementation provide, and (2) what is the practical burden of a diligent search. The analysis reveals that the jurisdictions have given different meanings to the term “diligent”. While the UK’s extensive guidance makes it unlikely that a search would not be deemed diligent, the search burden is onerous. On the other hand, Italy and especially the Netherlands have a lighter search burden, but in the absence of clear, definite guidance, the likelihood of accidental infringement by failing to meet the diligence standard is greater. In addition, all three jurisdictions have so far failed to take the accessibility of the sources into account, making the searches even more onerous than the numbers suggest at first sight. Therefore, it will be difficult for cultural institutions to clear the rights for their collections while fully complying with the requirements of the legislation. This article concludes that legislative action, official guidelines, or jurisprudence are needed to establish a different legal value of sources for a diligent search, with various degrees of optionality depending on data relevance and accessibility
    corecore